


2



Practical	Embedded	Security
Building	Secure	Resource-Constrained	Systems

Timothy	Stapko

Newnes

3



Table	of	Contents

Cover	image

Title	page

Copyright

Preface

Chapter	1:	Computer	Security	Introduction	and	Review

What	Is	Security?

What	Can	We	Do?

Access	Control	and	the	Origins	of	Computer	Security	Theory

Security	Policies

Cryptography

Data	Integrity	and	Authentication

Wrap-Up

Recommended	Reading

Chapter	2:	Network	Communications	Protocols	and	Built-in	Security

Low-Level	Communications

Transport	and	Internet	Layer	Protocols

Other	Network	Protocols

Wrap-Up:	Network	Communications

Chapter	3:	Security	Protocols	and	Algorithms

Protocol	Madness

Standardizing	Security—A	Brief	History

Standardized	Security	in	Practice

Cryptography	and	Protocols

Other	Security	Protocols

Chapter	4:	The	Secure	Sockets	Layer

4



SSL	History

Pesky	PKI

PKI	Alternatives

SSL	Under	the	Hood

The	SSL	Session

SSL	in	Practice

Wrap-Up

Chapter	5:	Embedded	Security

Networked	Embedded	Systems	and	Resource	Constraints

Embedded	Security	Design

The	KISS	Principle

Modularity	Is	Key

Pick	and	Pull

Justification

Wrap-Up

Chapter	6:	Wireless

Wireless	Technologies

Bluetooth

ZigBee

Wireless	Technologies	and	the	Future

Wrap-Up

Chapter	7:	Application-Layer	and	Client/Server	Protocols

Introduction

The	World	Wide	Web

Web-Based	Interfaces

Server-Side	HTTP	Web	Interfaces

HTTP	Client	Web	Interfaces

Combination	Client/Server	HTTP	Applications

Console	Applications

File	Transfer	Protocol

5



Email,	DNS,	DHCP,	and	SNMP

Wrap-Up

Chapter	8:	Choosing	and	Optimizing	Cryptographic	Algorithms	for
Resource-Constrained	Systems

Do	We	Need	Cryptography?

Hashing–Low	Security,	High	Performance

To	Optimize	or	Not	to	Optimize	…

Choosing	Cryptographic	Algorithms

Tailoring	Security	for	Your	Application

Wrap-Up

Chapter	9:	Hardware-Based	Security

High	Performance	in	Silicon

Wrap-Up:	Security	and	Hardware

Chapter	10:	Conclusion—Miscellaneous	Security	Issues	and	the	Future
of	Embedded	Applications	Security

Programming	Languages	and	Security

Dealing	with	Attacks

The	Future	of	Security

Wrap-Up

Chapter	11:	PIC	Case	Study

Microchip	PIC	with	Ethernet	Controller

PIC	Example	Application—Secure	LED	Blinking

Chapter	12:	Rabbit	Case	Study

Rabbit	4000	CPU	with	Dynamic	C

The	History	of	Rabbit

Software	on	the	Rabbit

Rabbit	Case	Study—Internet	Enabled	Vending	Machine

Putting	It	All	Together

The	PC	Side

Wrap-Up:	A	Secure	Rabbit

6



Source	Listings

Index

7



Copyright

Newnes	is	an	imprint	of	Elsevier
30	Corporate	Drive,	Suite	400,	Burlington,	MA	01803,	USA
Linacre	House,	Jordan	Hill,	Oxford	OX2	8DP,	UK
Copyright	©	2008,	Elsevier	Inc.	All	rights	reserved.
Cover	image	by	iStockphoto
No	 part	 of	 this	 publication	 may	 be	 reproduced,	 stored	 in	 a	 retrieval

system,	or	transmitted	in	any	form	or	by	any	means,	electronic,	mechanical,
photocopying,	 recording,	or	otherwise,	without	 the	prior	written	permission
of	the	publisher.
Permissions	may	be	sought	directly	from	Elsevier’s	Science	&	Technology

Rights	 Department	 in	 Oxford,	 UK:	 phone:	 (+44)	 1865	 843830,	 fax:	 (+44)
1865	853333,	E-mail:	permissions@elsevier.com.	You	may	also	complete	your
request	 online	 via	 the	Elsevier	homepage	 (http://elsevier.com),	 by	 selecting
“Support	 &	 Contact”	 then	 “Copyright	 and	 Permission”	 and	 then	 “Obtaining
Permissions.”

	 Recognizing	 the	 importance	 of	 preserving	 what	 has	 been	 written,
Elsevier	prints	its	books	on	acid-free	paper	whenever	possible.
Library	of	Congress	Cataloging-in-Publication	Data
Application	submitted
British	Library	Cataloguing-in-Publication	Data
A	catalogue	record	for	this	book	is	available	from	the	British	Library.
ISBN:	978-0-7506-8215-2
For	information	on	all	Newnes	publications
visit	our	Web	site	at	www.books.elsevier.com
07	08	09	10		10	9	8	7	6	5	4	3	2	1
Printed	in	the	United	States	of	America

8

mailto:permissions@elsevier.com
http://elsevier.com
http://www.books.elsevier.com


Preface

Living	in	a	Connected	World

1:37	 AM.	 Hoover	 Dam,	 straddling	 the	 border	 of	 Nevada	 and	 Arizona,	 is
quietly	 generating	 electricity	 for	 millions	 of	 Americans.	 The	 power	 plant,
having	recently	been	retrofitted	with	a	new,	remotely	controlled	automation
system,	 is	 devoid	 of	 life,	 except	 for	 the	blinking	 lights	 of	 the	network	hubs
and	automated	hardware.	Suddenly,	the	control	room	is	ablaze	with	light,	and
the	whirring	of	machines	breaks	the	silence.	The	enormous	floodgates	open,	a
torrent	 of	 water	 rushing	 forth,	 sending	 a	 wave	 of	 destruction	 toward	 the
unsuspecting	 communities	 downstream	on	 the	Colorado	River.	 The	 turbines
grind	to	a	halt,	plunging	the	desert	into	darkness.	All	the	while,	a	teenager	in
Florida	is	laughing	in	the	glow	of	his	computer	monitor.

Obviously,	 no	 one	 in	 his	 or	 her	 right	 mind	 would	 trust	 the	 control	 of
Hoover	Dam	to	a	system	with	such	gaping	vulnerabilities,	but	the	hyperbole
of	the	example	above	does	bring	up	an	important	point:	as	more	and	more	of
the	world	goes	“online,”	we	are	putting	more	and	more	trust	in	the	embedded
systems	 that	 are	 designed	 to	 help	 us	 out.	 Obviously,	 something	 like	 the
Hoover	Dam	would	not	be	automated	and	connected	to	the	Internet	without	a
large	investment	in	security,	 if	 it	was	automated	at	all.	However,	something
far	simpler,	such	as	a	home	automation	system,	would	likely	not	be	subject	to
the	 same	 rigorous	 treatment	 as	 a	 vital	 hydroelectric	 power	 plant.	 This	 split
between	 the	 security	 requirements	 of	 different	 embedded	 systems	 helps	 to
illustrate	 the	 challenge	 of	 security	 design	 for	 embedded	 systems	 engineers.
While	 the	 cutting	 edge	 of	 security	 is	 continually	 being	 pushed,	 low-end
hardware	 and	 inexpensive	 systems	 are	 often	 left	 behind.	 However,	 these
inexpensive	 systems	 are	 increasingly	 being	 networked	 and	 used	 to	 control
more	 and	 more	 vital	 systems.	 This	 leads	 to	 an	 interesting	 and	 disturbing
problem:	 Security	 implementations	 are	 often	 jealously	 guarded	 proprietary
solutions	that	sell	for	thousands	of	dollars,	which	is	directly	at	odds	with	the
idea	of	 using	 inexpensive	microcontrollers.	 There	 are	 some	options,	 such	 as
various	 open-source	 implementations,	 but	 these	 can	 be	 unwieldy	 and	 are
designed	 for	PCs.	 If	 you	want	 to	design	 an	 inexpensive	 system	and	make	 it
secure,	there	just	are	not	many	options.
One	 of	 the	 biggest	 problems	 with	 security	 in	 both	 the	 Hoover	 Dam

example	and	home	automation	is	 the	continual	need	for	updates	 to	keep	up

9



with	malicious	hackers.	Anyone	with	a	PC	running	Microsoft	Windows	knows
about	 this	 from	 the	 continual	 stream	 of	 updates	 and	 patches	 for	 various
security	issues.	One	way	to	alleviate	the	continual	update	problem	is	to	design
security	 into	 the	 system	and	develop	 a	 solid	 application	 to	 begin	with.	 The
primary	 goal	 of	 this	 book	 is	 to	 introduce	 the	 users	 of	 inexpensive
microcontrollers	 and	 embedded	processors	 to	 the	basic	 practical	 application
of	security	and	to	provide	some	tools	and	pointers	to	assist	in	designing	more
secure	applications	with	limited	resources.
Many	 of	 the	 topics	 discussed	 in	 this	 book	 are	 covered	 in	 depth	 in

hundreds	of	academic	papers	and	tomes	filled	with	arcane	symbols.	If	you	are
interested	in	the	mathematical	underpinnings	of	cryptography,	you	are	going
to	 want	 to	 look	 elsewhere.	 However,	 if	 you	 work	 with	 microcontrollers	 or
inexpensive	 embedded	 systems	 and	 security	 has	 been	 something	 of	 interest
but	you	have	been	intimidated	by	it,	 then	this	book	is	 for	you.	Security	is	a
hard	problem,	and	a	lot	of	very	smart	people	have	spent	a	lot	of	time	working
on	it.	The	result	is	that	the	topic	of	security	has	taken	on	an	intimidating	air,
especially	 when	 it	 comes	 to	 cryptography.	 This	 book	 aims	 to	 leverage	 the
large	 body	 of	 work	 already	 done	 on	 security	 and	 adapt	 it	 for	 systems	 that
usually	 aren’t	 deemed	 powerful	 enough.	 As	 you	 will	 see,	 it	 is	 possible	 to
implement	security	for	some	of	even	the	most	modest	of	architectures,	such	as
porting	AES	to	a	PIC	and	using	SSL	on	an	8-bit	microprocessor	(both	of	these
are	covered	in	extensive	case	studies	of	working	implementations).
This	 book	 covers	 the	 practical	 side	 of	 implementing	 security	 for

embedded	 systems,	 using	 publicly	 available	 and	 inexpensive	 proprietary
implementations	 whenever	 possible.	 However,	 just	 having	 a	 cryptographic
algorithm	does	not	mean	you	have	security.	There	are	a	number	of	issues	to
consider	when	using	cryptography.	We	will	cover	some	of	them	and	hopefully
provide	some	insight	into	how	you	can	find	them	on	your	own.

Security	in	Shades	of	Gray

There	is	no	such	thing	as	perfect	security.	Think	about	it.	As	long	as	there	is
information	that	can	be	exploited,	there	will	be	someone	trying	to	get	it,	and
with	enough	resources,	any	security	can	be	broken.	The	only	way	to	be	sure
that	 information	 is	 completely	 “safe”	 is	 to	 destroy	 it	 and	kill	 all	 the	people
who	know	about	it,	which	obviously	does	no	one	any	good.	For	this	reason,
secure	 systems	 are	 built	 using	 the	 idea	 of	 hazard	 tolerance—that	 is,	 each
system	has	 to	have	security	 that	meets	 the	requirements	 for	 the	system.	For
example,	a	credit	card	system	needs	more	security	than	your	personal	email
(which	 we	 all	 know	 is	 completely	 insecure).1	 Unfortunately,	 security	 is	 an
inherently	difficult	problem	to	solve,	since	the	worst	problems	are	necessarily

10



those	that	you	cannot	possibly	predict.	The	only	way	to	ensure	a	high	level	of
security	 is	 to	 make	 your	 system	 as	 robust	 as	 possible,	 and	 keep	 it	 simple
enough	to	understand	so	you	can	at	 least	predict	some	of	 the	more	difficult
problems.	The	fewer	legitimate	access	points	into	your	system	you	implement,
the	higher	 the	probability	 it	 is	 safe.	The	more	 features	and	possible	outside
connections	available,	the	more	likely	it	is	that	you	will	have	an	unintended
back	 door.	 Legitimate	 entry	 points	 need	 to	 be	 secured	 using	 a	 number	 of
different	 mechanisms,	 depending	 on	 the	 desired	 level	 of	 security	 and	 the
application.	 These	 mechanisms	 range	 from	 simple	 password	 schemes	 that
provide	only	a	small	illusion	of	security	to	full	security	protocols	that	require
vast	amounts	of	computing	power.	Many	of	 the	mechanisms	used	to	protect
data	 in	 full	 security	 protocols,	 such	 as	 cryptography,	 usually	 require	 rather
high	 levels	 of	 computing	 power,	 since	 they	 are	 based	 on	 powerful
mathematical	algorithms	that	require	millions	of	calculations	to	be	performed.
Most	 security	 protocols	 work	 under	 the	 assumption	 that	 only	 the	 most
powerful	hardware	is	available.	The	problem	with	this	assumption,	of	course,
is	 that	 the	 most	 powerful	 hardware	 is	 very	 often,	 for	 economic	 or	 other
reasons,	not	available.

Enter	the	resource	constrained	system.	Embedded	systems	that	utilize	low-
cost	 components	may	 not	 have	 the	 resources	 required	 to	 implement	 one	 of
these	 “true”	 security	 solutions.	 Many	 security	 protocols,	 algorithms,	 and
mechanisms	are	built	for	the	latest	and	greatest	hardware—usually	PCs	or	the
most	 expensive	 embedded	 controllers	 and	 processors.	 The	 vendors	 will	 tell
you	that	you	need	all	that	power	to	build	a	secure	system,	but	the	reality	is
that	 it	 really	only	depends	on	your	application.	You	may	not	have	access	 to
that	kind	of	power	but	still	need	security,	so	are	you	simply	out	of	luck?	This
is	why	we	introduced	the	chapter	with	the	discussion	on	hazard	tolerance:	To
build	secure	systems	in	a	resource-constrained	environment,	we	need	to	adapt
the	 security	 or	 the	 application	 so	 that	 they	work	 together	without	 bringing
the	entire	system	to	a	halt	 (potentially	a	dangerous	problem	if	 the	device	 is
controlling	a	large	automated	punch	press,	for	example).	The	idea	behind	this
book	is	that	it	is	possible	to	build	secure	and	cost-effective	systems.

11



Who	This	Book	Is	For

This	 book	 is	 for	 anyone	 interested	 in	 making	 the	 world	 more	 secure.
Embedded	 systems	 make	 up	 the	 lion’s	 share	 of	 the	 technology	 market	 (in
volume,	not	necessarily	in	revenue)	and	are	as	pervasive	as	the	products	they
help	build	and	control.	This	book	is	particularly	suited	to	embedded	systems
designers	 and	 engineers,	 but	 it	 may	 serve	 engineering	 managers	 as	 an
introduction	 to	 a	 very	 important	 subject.	 Software	 engineers	 (embedded	 or
not)	are	not	the	target	audience,	since	many	of	the	topics	contained	herein	are
covered	 in	more	depth	 in	computer	science	courses	and	reference	materials,
but	the	case	studies	may	still	be	of	some	interest.	This	book	takes	a	practical
approach	to	implementing	security	using	available	implementations	and	does
not	 delve	 deeply	 into	 the	 mathematical	 and	 theoretical	 foundations	 of
security.	 For	 that,	 the	 reader	 is	 encouraged	 to	 attend	 university	 computer
security	courses	or	read	anything	by	Bruce	Schneier.2

The	 content,	 though	 technical,	 should	 not	 be	 outside	 the	 reach	 of
nonengineers	(although	knowledge	of	programming	and	Internet	technologies
will	definitely	help).	The	idea	is	to	juxtapose	technical	content	with	a	higher-
level	discussion	of	the	subject	to	get	the	reader	interested	in	the	material	and
to	think	about	the	implications	of	deploying	unsecured	applications.

12



What	This	Book	Is	and	What	It	Is	Not

The	goal	of	this	book	is	to	be	a	resource	for	all	embedded	systems	designers
—the	first	place	to	turn	to	when	looking	into	security.	The	scope	of	computer
security	is	so	broad	that	no	single	text	will	provide	all	the	answers	you	might
need.	This	book	aims	to	give	the	reader	a	start	in	the	right	direction,	looking
at	some	of	the	technologies	available,	providing	a	context	in	which	to	discuss
those	technologies,	and	giving	a	starting	point	for	designing	secure	embedded
systems.	 It	 should	 be	 considered	 as	 a	 first	 read	 for	 embedded	 security
research,	to	get	a	quick	overview	of	the	challenges	involved,	and	to	get	some
ideas	 to	move	 forward	with.	 This	 book	 is	 organized	 so	 that	 the	 reader	 can
quickly	 locate	 the	 information	he	or	 she	needs	and	use	 it	 as	 a	basis	 for	 the
research	into	the	project	at	hand.

This	book	is	not	a	complete	treatment	of	computer	security.	Indeed,	it	is
not	 even	 a	 complete	 treatment	 of	 secure	 embedded	 systems	 design.	 The
assumption	 is	 that	 the	material	presented	will	get	 the	reader	 thinking	about
his	or	her	own	project,	provide	a	platform	of	information	to	start	off	with.	We
will	 leave	 the	 goriest	 details	 to	 texts	 devoted	 to	 rigorous	 mathematical
treatments	and	detailed	 security	protocols	 that	already	 flood	 the	market	 (as
an	example,	the	de	facto	standard	reference	text	for	the	Secure	Sockets	Layer
by	itself	is	over	400	pages	long!).3

Why	Embedded	Security?

Some	 people	 may	 ask	 why	 this	 book	 is	 necessary.	 There	 are	 so	 many
general-purpose	 texts	 on	 computer	 security	 that	 it	 seems	 one	 could	 simply
buy	 a	 few	 books	 and	 be	 able	 to	 design	 a	 secure	 embedded	 system.	 The
problem	is,	as	has	been	mentioned	previously,	that	these	texts	usually	cover
security	 under	 ideal	 conditions—that	 is,	 the	 hardware	 can	 support	 the
mechanisms	 that	 are	 used	 and	 generally	 can	 support	 many	 mechanisms
simultaneously.	There	are	also	some	who	believe	that	if	you	need	security	for
a	 system,	 you	 should	 just	 buy	 the	 latest	 and	 greatest	 hardware	 and	 use
standard	(usually	PC-centric)	security	protocols.	The	real	world	of	embedded
design	 does	 not	 always	 work	 like	 that.	 Economics	 plays	 a	 big	 role.	 Some
applications	require	 thousands	or	millions	of	units,	and	saving	a	 few	dollars
on	components	really	adds	up.	Why	should	we	have	to	upgrade	to	expensive
hardware	just	so	that	we	can	use	a	cookie-cutter	implementation	designed	to
work	 on	 a	 PC?	 In	 fact,	 many	 vendors	 will	 claim	 that	 you	 need	 the	 most
feature-packed	hardware	package	they	offer	or	you	will	not	have	any	security
at	all.	Since	security	is	considered	“voodoo”	or	“black	magic”	by	many	people,

13



these	claims	seem	reasonable.	This	couldn’t	be	farther	from	the	truth.	There	is
absolutely	no	reason	we	should	not	expect	some	 level	of	 security	 from	even
the	 most	 modest	 hardware.	 There	 are	 things	 that	 can	 be	 done	 to	 provide
protection	 on	 any	 system,	 and	 we	 shouldn’t	 have	 to	 choose	 between	 cost-
effectiveness	and	peace	of	mind.

The	 key	 point	 to	 remember	 is	 that	 embedded	 security	 is	 application
dependent.	 In	 the	 personal	 computer–dominated	 Internet,	 security	 solutions
are	typically	designed	to	be	general	and	flexible,	reflecting	the	properties	of
the	 systems	 being	 protected	 (the	 general-purpose	 and	 flexible	 PCs).	 In	 the
embedded	world,	the	systems	needing	protection	have	unique	properties	and
are	particularly	 suited	 to	 specific	applications.	The	security	needed	by	 these
applications	 is	 similarly	 unique	 and	 specific.	 The	 general	 solutions	 typically
employed	 in	 the	 existing	 Internet	 often	 do	 not	 work	 “out	 of	 the	 box”	 for
embedded	systems,	and	simply	porting	existing	security	protocols	can	lead	to
code	 bloat	 for	 features	 that	 are	 unnecessary.	 Instead,	 the	 security	 for	 an
embedded	 system	 needs	 to	 be	 specifically	 tailored	 to	 the	 particular
application	 being	 developed.	 This	 is	 not	 to	 say	 that	 existing	 protocols	 and
policies	cannot	be	used	(and	indeed	should	be	used),	but	rather	that	we	need
to	 adapt	 Internet	 security	 to	 an	 embedded	 world	 through	 analysis	 of	 the
applications	to	which	these	concepts	are	applied.
The	reader	is	encouraged	to	use	this	book	as	a	way	to	start	learning	how

to	look	at	security	for	embedded	systems,	rather	than	as	a	universal	solution
to	 all	 your	 security	 needs.	 Reading	 the	 book	 cover	 to	 cover	 will	 definitely
increase	 your	 knowledge	 of	 the	 subject	 matter,	 but	 it	 is	 by	 no	 means
necessary	in	order	to	get	what	you	need	out	of	the	book.	It	is	recommend	that
you	 read	 the	 following	 three	 chapters,	 covering	 computer	 security
fundamentals,	 Internet	 security,	 and	 the	 principles	 of	 embedded	 Internet
security,	respectively.	These	chapters	will	give	you	a	foundation	for	the	rest	of
the	text.	If	you	are	already	familiar	with	computer	and	Internet	security,	then
go	 ahead	 and	 skip	 to	 Chapter	 3	 (where	 we	 cover	 security	 algorithms	 and
protocols)	unless	you	need	a	refresher	(which	is	recommended	anyway).	After
reading	those	chapters,	the	rest	of	the	book	is	organized	so	that	you	can	easily
find	 a	 particular	 topic	 of	 interest,	 or	 just	 continue	 reading	 through	 all	 the
chapters	to	get	a	comprehensive	coverage	of	the	content.	We	will	look	at	the
various	 aspects	 of	 embedded	 Internet	 security,	 from	 communications,	 to
software	security	implementations,	to	hardware	for	security.

Roadmap

Chapter	 1	 introduces	 (or	 reintroduces)	 readers	 to	 the	 basics	 of	 computer
security,	 with	 some	 light	 theoretical	 background,	 a	 look	 at	 the	 different

14



subfields	 within	 computer	 security,	 and,	 most	 importantly,	 a	 look	 at	 the
security	 mechanisms	 that	 will	 be	 covered	 in	 the	 rest	 of	 the	 book.	 This
information	 is	 provided	 as	 background	 for	 readers	 unfamiliar	 with	 security
and	 cryptography.	 Those	 readers	 with	 some	 background	 may	 wish	 to	 skip
ahead	to	later	chapters.

Our	 security	 introduction	will	 begin	with	 some	 light	 theory	 to	 give	 the
reader	 a	 foundation	 for	 the	 rest	 of	 the	 chapters.	 The	 basic	 premise	 of
computer	 security	 is	access	control—who	 can	 and	 cannot	 control	 and	 access
some	particular	application	or	data.	We	will	look	at	the	theory	behind	access
control	 and	 introduce	 some	 analysis	 techniques	 based	 on	 the	 access	 control
matrix	model.
In	Chapter	2,	we	will	 look	 at	 some	 low-level	 networking	 protocols	 and

what	to	look	out	for	in	using	them.	Part	of	the	reason	for	looking	at	this	low-
level	functionality	is	to	get	used	to	analyzing	the	protocols	you	intend	to	use.
Without	 some	 understanding	 of	 how	 the	 low-level	 things	work,	 you	 cannot
have	much	assurance	that	your	application	is	secure.
Some	 of	 the	 topics	 to	 cover	 are	 TCP/IP.	 UDP,	 Serial	 communications,

PPP,	and	Ethernet	(wireless	protocols	will	be	discussed	later).	There	will	be	a
brief	description	of	each	protocol,	what	it	is	used	for,	and	how	it	works	with
security	 mechanisms.	 There	 are	 definite	 differences	 between	 all	 of	 these
networking	technologies	that	may	lead	to	issues	when	attempting	to	secure	an
application.	Choosing	a	communications	technology	wisely	can	save	headache
and	extra	work	later.	We	will	try	to	sort	out	the	mess	of	available	options	in
an	attempt	to	help	the	reader	choose	the	technology	that	is	best	for	them.
In	Chapter	3	we	will	 look	at	the	world	of	Internet	security,	 from	simple

hashing	 techniques	 used	 in	 web-based	 applications	 to	 full-blown	 security
protocols	like	SSL.	In	this	chapter	we	look	at	various	standard	cryptographic
algorithms	and	how	they	are	used.	This	chapter	covers	the	algorithms	that	are
the	building	blocks	of	secure	networked	systems.
Chapter	4	 is	all	about	SSL.	The	Secure	Sockets	Layer	 is	 so	 important	 to

Internet	 security	 that	we	devote	 an	 entire	 chapter	 to	 it.	 SSL	 is	 the	 de	 facto
standard	for	secure	Internet	transactions.	It	has	achieved	this	status	by	being
not	only	 secure,	but	being	highly	generic	as	well.	SSL	exists	 in	 the	network
layer	between	TCP	and	your	application,	providing	blanket	security	to	all	data
transferred	over	the	network.	The	API	for	SSL	is	typically	very	similar	to	the
standard	 network	 sockets	 API	 (POSIX-style).	 For	 this	 reason,	 it	 is	 simple	 to
transform	any	plain	TCP/IP	application	into	a	secure	Internet	application	with
very	 little	 effort.	 We	 will	 look	 at	 how	 to	 implement	 SSL	 for	 embedded
platforms	and	cover	the	options	we	have	in	adapting	the	protocol	to	work	for
specific	 applications.	 SSL	 is	 very	 component-driven,	 and	we	 can	 use	 this	 to
our	advantage.

15



Chapter	5	covers	 security	 from	the	embedded	systems	developer’s	point
of	view.	First	and	foremost,	the	primary	concept	that	will	be	introduced	here
and	 reinforced	 throughout	 the	 text	 is	 that	 the	 embedded	 systems	 we	 are
covering	 are	NOT	PCs	 or	 expensive	 devices	 running	Windows	 or	 Linux.	 In	 this
chapter	 we	 will	 also	 introduce	 strategies	 for	 choosing	 algorithms	 and
protocols	 for	 a	 particular	 platform	 and	 for	 choosing	 a	 platform	 based	 on
security	requirements.	There	are	many	tradeoffs	to	be	considered,	and	we	will
look	at	 some	examples	 to	get	an	 idea	of	what	 is	 available	 to	 the	embedded
developer.	We	will	 look	at	 some	of	 the	 features,	pros	 and	cons,	 of	different
protocols	and	algorithms.	The	reader	can	then	use	this	section	as	a	guide	to
using	the	rest	of	the	book	for	their	applications.
Also	 in	 Chapter	 5,	 we	 will	 look	 at	 embedded	 security	 protocols—or,

rather,	the	lack	of	them.	The	problem	is	that	unlike	a	PC,	which	can	support	a
myriad	 of	 protocols	 and	 algorithms	 simultaneously,	 each	 embedded	 device
can	only	have	one	or	two	protocols	resident	at	any	given	time.	We	will	spend
the	 rest	 of	 this	 chapter	 looking	 at	 why	 designing	 an	 embedded	 security
protocol	 is	 extremely	 difficult.	 The	 requirements	 vary	 greatly	 between
applications,	 and	 the	 capabilities	 of	 the	 hardware	 have	 a	 similar	 variance.
This	section	will	provide	a	justification	for	the	treatment	of	the	protocols	and
algorithms	throughout	the	remainder	of	the	text.
By	Chapter	6	the	reader	should	have	a	fairly	decent	understanding	of	the

concepts	 involved	 in	securing	a	system,	and	he/she	should	have	a	relatively
clear	 picture	 of	 why	 securing	 embedded	 systems	 represents	 a	 significant
challenge.	 This	 chapter	 covers	 networking	 technologies	 that	 will	 allow	 a
device	 to	 be	 connected	 wirelessly	 to	 the	 Internet	 or	 each	 other.	 The	 vast
majority	of	new	resource-constrained	networked	systems	will	likely	be	in	the
wireless	and	cellular	arena.	Wireless	networking	has	 taken	off	as	a	hot	new
technology	and	represents	one	of	the	fastest-growing	markets	in	the	industry.
We	 will	 look	 at	 protocols	 that	 are	 commonly	 used	 and	 appropriate	 for
embedded	 development,	 such	 as	 802.11	 (Wi-Fi),	 Bluetooth,	 and	 ZigBee.
Beyond	this,	we	will	 look	at	each	protocol	 for	the	purposes	of	securing	data
being	sent	and	received.
In	Chapter	7	we	look	at	client/server	applications	and	their	relevance	to

the	 embedded	world.	The	World	Wide	Web	 is	 by	 far	 the	most	 recognizable
and	widely	used	 application	of	 the	 Internet	 and	 represents	 the	 fundamental
client/server	relationship.	As	such,	it	stands	to	reason	that	a	large	number	of
networked	 embedded	 applications	 will	 have	 some	 type	 of	 Web	 service
functionality.	 For	 this	 reason,	 we	 will	 start	 our	 tour	 of	 secure	 embedded
applications	with	a	look	at	the	Web	and	other	client/server	applications.
Chapter	 8	 covers	 some	 basic	 ideas	 and	 common	 pitfalls	 related	 to	 the

optimization	 of	 security	 mechanisms.	 Here	 we	 look	 at	 cryptographic

16



algorithms	 and	 how	 to	 make	 them	 work	 for	 embedded	 machines.
Cryptography	 presents	 the	 biggest	 challenge	 to	 any	 security	 solution	 to	 be
implemented	 for	 a	 resource-constrained	 embedded	 device	 because	 of	 the
requirements	 of	 these	 computationally	 complex	 algorithms.	 Cryptography	 is
notoriously	expensive	when	it	comes	to	clock	cycles,	and	many	algorithms	are
not	 too	 friendly	 to	 small	 storage	 devices	 (code	 and	 data).	 We	 will	 look	 at
various	strategies	for	choosing	algorithms	for	specific	applications	and	look	at
some	specific	algorithms,	as	well	as	some	strategies	to	avoid	some	of	the	more
problematic	resource	issues.
In	 Chapter	 9	 we	 look	 at	 hardware	 alternatives	 that	 allow	 embedded

developers	 to	 get	 the	most	 out	 of	 their	 systems.	 These	 alternatives	 include
hardware	 assistance	 and	 complete	 hardware	 security	 solutions.	 Hardware
assistance	 involves	 dedicated	 circuitry	 that	 provides	 part	 or	 all	 of	 the
functionality	 of	 a	 security	 mechanism	 at	 the	 speed	 of	 hardware.	 Complete
hardware	 solutions	 include	 entire	 security	 protocols	 implemented	 in	 silicon
for	 the	maximum	possible	 performance.	 Both	 of	 these	 ideas	 can	 be	 used	 to
augment	an	embedded	system	without	sacrificing	the	affordability	of	the	base
hardware.	 We	 will	 also	 briefly	 cover	 physical	 security.	 When	 applying
security	 to	 an	 embedded	 system,	 this	 is	 an	 important	 point	 that	 may	 be
overlooked.	The	reason	for	this	is	that,	unlike	PCs	and	servers,	which	can	be
deployed	 in	 controlled	 environments,	 embedded	 devices	 are	 deployed
practically	 everywhere.	 We	 will	 look	 at	 some	 different	 technologies	 to
consider	when	choosing	an	embedded	device	for	a	secure	embedded	system.
In	Chapter	10	we	cover	some	miscellaneous	issues	with	security,	such	as

programming	gotchas	 in	 languages	 like	C	and	 recognizing	and	dealing	with
attacks.	 We	 finish	 up	 the	 chapter	 with	 a	 brief	 mention	 about	 the	 political
issues	regarding	cryptography	and	exported	applications.	We	start	the	chapter
by	looking	at	how	development	tools	and	languages	factor	into	the	security	of
an	 application.	 Some	 languages,	 such	 as	 Java,	 provide	 some	 built-in
safeguards	 that	 help	 with	 overall	 security,	 such	 as	 strict	 typing.	 C	 is	 the
predominant	 language	used	 for	many	embedded	devices,	but	 it	 suffers	 from
many	 shortcomings	 that	 make	 it	 difficult	 to	 use	 in	 implementing	 a	 secure
system.	We	will	look	at	some	of	the	features	of	different	languages	and	discuss
what	 to	 look	 for	 when	 choosing	 tools	 and	 languages	 and	when	 developing
software	for	your	system.	We	will	also	briefly	cover	attacks	and	how	to	deal
with	them.	Any	secure	system,	or	for	that	matter,	any	system	connected	to	a
network	 (the	 Internet	 or	 proprietary)	 will	 be	 subject	 to	 attacks—both
intentional	 (i.e.,	 malicious	 hackers)	 and	 inadvertently	 (i.e.,	 heavy	 network
traffic	 leading	 to	 Denial	 of	 Service;	 we	 will	 classify	 accidents	 as	 attacks	 to
simplify	 this	 chapter).	 We	 will	 look	 at	 how	 to	 deal	 with	 future	 attacks,
currently	 occurring	 attacks,	 and	 the	 aftermath	 after	 a	 successful	 attack.

17



Finally,	we	will	briefly	look	at	export	issues,	primarily	to	inform	the	reader	of
their	existence,	 since	dealing	with	political	 issues	 is	 far	beyond	the	scope	of
this	text.	We	close	out	Chapter	10	with	some	further	reading	and	a	discussion
about	the	future	of	embedded	security.
In	Chapters	11	and	12	we	look	at	some	application	case	studies.	In	these

chapters	 we	 will	 develop	 two	 applications	 from	 requirements	 to
implementation	 that	 use	 inexpensive	 hardware	 but	 also	 need	 some	 level	 of
security.	 These	 chapters	 are	 provided	 to	 help	 the	 reader	 see	 embedded
security	applied	to	real-world	implementations.	We	will	go	through	the	entire
development	of	 each	application,	 from	 initial	 requirements,	 to	developing	a
security	 policy,	 verifying	 the	 design,	 and	 finally	 deploying	 the	 application.
There	 is	 complete	 code	 for	 the	 two	 applications,	 with	 full	 listings	 of	 the
programs	 (not	 including	 library	 code)	 in	 Appendix	 A.	 The	 applications	 are
working	implementations	on	real	hardware	(using	a	PIC	and	the	8-bit	Rabbit
4000	microprocessor)	 that	 provide	 some	 insights	 into	 the	 development	 of	 a
secure	application	for	a	platform	with	limited	resources.

1This	may	not	be	completely	true	anymore,	as	there	are	various	applications	(such	as	PGP)	that

provide	encryption	services	for	email.	Generally	speaking,	though,	you	really	should	never	send

your	credit	card	number	via	email.

2Bruce	Schneier	is	widely	known	as	a	foremost	expert	in	computer	security	and	is	the	author	of

several	excellent	books	on	the	subject,	most	notably	Applied	Cryptography.

3SSL	and	TLS:	Designing	and	Building	Secure	Systems,	by	Eric	Rescorla.

18



CHAPTER	1

Computer	Security	Introduction	and	Review

This	chapter	is	intended	to	provide	a	quick	introduction	to	computer	security
for	embedded	systems	engineers	who	may	not	have	a	 formal	background	 in
computer	science	and	computer	security.	For	the	more	advanced	reader,	this
chapter	serves	as	a	review	of	computer	security	before	delving	into	the	later
material.	 This	 chapter	 is	 by	 no	 means	 a	 complete	 treatment	 of	 the	 theory
behind	computer	security—literally	hundreds	of	books	have	been	written	on
the	subject—but	it	should	at	 least	provide	a	basic	context	 for	all	readers.	At
the	end	of	 the	 chapter,	we	will	provide	a	 list	 of	 further	 reading	 for	 readers
wanting	a	deeper	treatment	of	the	theory.	We	will	briefly	touch	on	the	most
important	concepts,	 spending	most	of	 the	discussion	on	 those	 ideas	 that	are
most	pertinent	to	embedded	and	resource-constrained	systems.

Computer	security	is	a	rapidly	evolving	field;	every	new	technology	is	a
target	 for	hackers,	crackers,	 spyware,	 trojans,	worms,	and	malicious	viruses.
However,	 the	 threat	 of	 computer	 attacks	 dates	 back	 to	 the	 earliest	 days	 of
mainframes	 used	 in	 the	 1960s.	 As	 more	 and	 more	 companies	 turned	 to
computer	 technology	 for	 important	 tasks,	 attacks	 on	 computer	 systems
became	 more	 and	 more	 of	 a	 worry.	 In	 the	 early	 days	 of	 the	 Personal
Computer,	 the	worry	was	 viruses.	With	 the	 advent	 of	 the	World	Wide	Web
and	 the	 exponential	 expansion	 of	 the	 Internet	 in	 the	 late	 1990s,	 the	worry
became	hackers	and	denial	of	 service	attacks.	Now,	at	 the	dawn	of	 the	new
millennium,	 the	 worry	 has	 become	 spam,	 malware/spyware,	 email	 worms,
and	identity	theft.	All	of	this	begs	the	question:	How	do	we	protect	ourselves
from	this	perpetual	onslaught	of	ever-adapting	attacks?
The	answer,	as	you	may	have	guessed,	is	to	be	vigilant,	staying	one	step

ahead	 of	 those	 who	 would	 maliciously	 compromise	 the	 security	 of	 your
system.	 Utilizing	 cryptography,	 access	 control	 policies,	 security	 protocols,
software	 engineering	 best	 practices,	 and	 good	 old	 common	 sense,	 we	 can
improve	 the	 security	of	any	 system.	As	 is	 stated	by	Matt	Bishop,1	computer
security	 is	both	a	 science	and	 an	art.	 In	 this	 chapter,	we	will	 introduce	 this
idea	 to	 embedded	 systems	 engineers	 and	 review	 the	 basic	 foundations	 of
computer	security	to	provide	a	foundation	for	the	rest	of	the	book.

What	Is	Security?

19



To	 begin,	 we	 need	 to	 define	 security	 in	 a	 fashion	 appropriate	 for	 our
discussion.	For	our	purposes,	we	will	define	computer	security	as	follows:

Definition:	 Computer	 Security.	 Computer	 security	 is	 the	 protection	 of
personal	 or	 confidential	 information	 and/or	 computer	 resources	 from
individuals	 or	 organizations	 that	 would	 willfully	 destroy	 or	 use	 said
information	for	malicious	purposes.

Another	important	point	often	overlooked	in	computer	security	is	that	the
security	does	not	need	to	be	limited	to	simply	the	protection	of	resources	from
malicious	 sources—it	 could	 actually	 involve	protection	 from	 the	 application
itself.	This	is	a	topic	usually	covered	in	software	engineering,	but	the	concepts
used	 there	 are	 very	 similar	 to	 the	 methods	 used	 to	 make	 an	 application
secure.	 Building	 a	 secure	 computer	 system	 also	 involves	 designing	 a	 robust
application	that	can	deal	with	internal	failures;	no	level	of	security	is	useful	if
the	system	crashes	and	is	rendered	unusable.	A	truly	secure	system	is	not	only
safe	 from	 external	 forces,	 but	 from	 internal	 problems	 as	 well.	 The	 most
important	point	is	to	remember	that	any	flaw	in	a	system	can	be	exploited	for
malicious	purposes.
If	you	are	not	familiar	with	computer	security,	you	are	probably	thinking,

“What	does	 ‘protection’	 actually	mean	 for	 a	 computer	 system?”	 It	 turns	out
that	there	are	many	factors	that	need	to	be	considered,	since	any	flaw	in	the
system	 represents	 a	 potential	 vulnerability.	 In	 software,	 there	 can	 be	 buffer
overflows,	which	 potentially	 allow	 access	 to	 protected	 resources	within	 the
system.	Unintended	 side	 effects	 and	 poorly	 understood	 features	 can	 also	 be
gaping	holes	 just	 asking	 for	 someone	 to	break	 in.	Use	of	 cryptography	does
not	 guarantee	 a	 secure	 system	 either;	 using	 the	 strongest	 cryptography
available	does	not	help	 if	 someone	 can	 simply	hack	 into	 your	machine	 and
steal	 that	 data	 directly	 from	 the	 source.	 Physical	 security	 also	 needs	 to	 be
considered.	Can	a	malicious	individual	gain	access	to	an	otherwise	protected
system	 by	 compromising	 the	 physical	 components	 of	 the	 system	 (this	 is
especially	 important	 for	 embedded	 systems)?	 Finally,	 there	 is	 the	 human
factor.	Social	engineering,	essentially	the	profession	practiced	by	con	artists,
turns	 out	 to	 be	 a	major	 factor	 in	many	 computer	 system	 security	 breaches.
This	book	will	cover	all	of	the	above	issues,	except	the	human	factor.	There	is
little	that	can	be	done	to	secure	human	activities,	and	it	is	a	subject	best	left
to	lawyers	and	politicians.

What	Can	We	Do?

In	 the	 face	of	all	 these	adversities,	what	can	we	do	 to	make	 the	system	 less
vulnerable?	 Next	 we	 will	 look	 at	 the	 basics	 of	 computer	 security	 from	 a
general	level	to	familiarize	the	reader	with	the	concepts	that	will	be	reiterated

20


